The 386th Geodynamics Seminar Synthesis of carbon nitride under high pressure and high temperature, and the problems toward synthesizing super-hard phases of carbon nitride ## Dr. Yohei Kojima (Postdoctoral Fellow, GRC) Date: 05.30.2014 (Fri) 16:30 ~ Venu: Meeting Room #486, Science Research Bldg 1, Ehime Univ. 日時: 2014年5月30日(金)16:30~ 場所:愛媛大学 総合研究棟 I 4階共通会議室 ## **Abstract** There have been considerable interests on carbon nitride (C₃N₄) since the theoretical calculation predicted that β-C₃N₄ is potentially harder than diamond (Liu and Cohen, 1989). In five polymorphs proposed by Teter and Hemley (1996), cubic- C_3N_4 has the highest bulk modulus, $K_0 = 496$ GPa, and is the most stable at high pressure. This phase can be synthesized at 12 GPa using graphitic-C₃N₄, which is stable at ambient pressure, as a starting material. Although many attempts were performed to synthesize a super-hard phase of C₃N₄, none of them has shown clear evidence of a crystalline phase of C₃N₄. On the other hand, Horvath-Bordon et al. (2007) reported that hydrogen-bearing carbon nitride C₂N₂(NH), which has an orthorhombic structure, has been synthesized at 27 GPa and 1973 K using dicyandiamide as a starting material. Sougawa et al. (2010 - 2013) also showed that graphitic-C₃N₄H_xO_y transformed to the orthorhombic phase with the chemical composition of C₂N₂(CH₂), however, the lattice parameter has the large difference between experimental and theoretical data. In my study, graphitic-C₃N₄H_y transformed to the hydrogen-bearing orthorhombic phase (C₂N₂[(NH)_{6/7}, (CH₂)_{1/7}]) which was stable up to 125 GPa and 3000 K (Kojima and Ohfuji, 2013). And also the annealed graphitic-C₃N_{4.4}H_{1.8} changed to the orthorhombic phase at 30 GPa and 1800 K. As a result, ternary C-N-H system favors the orthorhombic framework included hydrogen under high-pressure and high-temperature, thus super-hard phases of C₃N₄ cannot synthesize unless hydrogen-bearing carbon nitride is used for a starting material. Recently, several experiments using hydrogen-free carbon nitride have been conducted, but super-hard phases of C_3N_4 have not synthesized yet. In this presentation, I will talk about the phase relation and stability of carbon nitride under high pressure and high temperature, and the problems for the synthesis of super-hard phases of C_3N_4 . 詳細は当センターホームページ: http://www.ehime-u.ac.jp/~grc/をご覧ください 問い合わせ先: 出倉 春彦 (TEL:089-927-8408, e-mail:dekura@sci.ehime-u.ac.jp)