The 438th Geodynamics Seminar

Some thermodynamic properties of larnite (β -Ca₂SiO₄) constrained by high *T*/*P* experiment and/or theoretical simulation

Dr. Xiong Zhihua (Postdoctoral Fellow, GRC)

Date: 2.19.2016 (Fri) 16:30 ~ Venue: Meeting Room #486, Science Research Bldg 1, Ehime Univ.

日時:2016年2月19日(金)16:30~ 場所:愛媛大学 総合研究棟 I

场所:愛媛入子 総合研究棟 1 4階共通会議室

Abstract

Pure larnite (β -Ca₂SiO₄; Lrn) was synthesized at 6 GPa and 1473 K for 6 hours by using a cubic press, its thermal expansivity was investigated up to 923 K by using an X-ray powder diffraction technique (ambient P), and its compressibility was investigated up to ~16 GPa by using a diamond-anvil cell coupled with synchrotron X-ray radiation (ambient T). Its volumetric thermal expansion coefficient (α_V) and isothermal bulk modulus (K_T) were constrained as α_V = $4.24(4) \times 10^{-5}/K$ and $K_T = 103(2)$ GPa (the first pressure derivative obtained as 5.4(4), respectively. Its compressibility was further studied with the CASTEP code using density functional theory and planewave pseudopotential technique. We obtained the K_T values as 123(3) GPa (LDA; high boundary) and 92(2) GPa (GGA; low boundary), with the values of the as 4.4(9) and 4.9(5), respectively. The phonon dispersions and vibrational density of states (VDoS) of Lrn were simulated using density functional perturbation theory, and the VDoS was combined with a quasi-harmonic approximation to compute the isobaric heat capacity (C_P) and vibrational entropy (S⁰₂₉₈), yielding $C_P = 212.1(1) - 122.1(1)$ $9.69(5) \times 10^{2}T^{-0.5} - 4.1(3) \times 10^{6}T^{-2} + 5.20(7) \times 10^{8}T^{-3}$ J mol⁻¹ K⁻¹ for the T range of ~298-1000 K and $S_{298}^0 = 129.8(13) \text{ J mol}^{-1} \text{ K}^{-1}$.